Privacy-friendly Aggregation for the Smart-grid

Klaus Kursawe, George Danezis, and Markulf Kohlweiss *Ting-Wen(Benson) Chen*

Content

O Introduction • Basic Protocol Types O Aggregation / Comparison O Concrete Protocols O Interactive / DH Key-Exchange based O DH and Bilinear-map based / Low-overhead Comparison O

O Conclusion

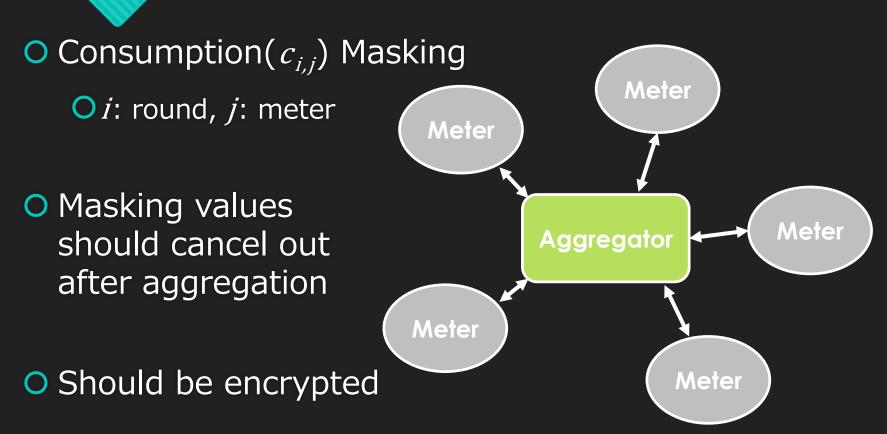
Introduction

• Why Aggregation?

All Around The World • **Privacy Concern** (personal data leakage)

Security Concern (fraud)

Safety Concern (leakage of gas)


O Forecasting

Ο...

• The meter here can also from the system of water or gas ...

Introduction

Basic Protocol Types

Aggregation Protocol
Blinded value: x_{i,j} + c_{i,j}
Result = Σ(c_{i,j}) ; Σ(x_{i,j}) = 0
Comparison Protocol
Blinded value: g_i<sup>x_j+c_{i,j}
Result = g_i<sup>Σ c_{i,j} , g_i ∈ Diffie-Hellman group G
Compare the result and its guess g_i^{c_a}
</sup></sup>

• Masking value: $X_{i,j}$

O Interactive Protocol

- Each user j have private key (X_j) and public key (Pub_j)
- Choose *p* leaders from *n* users: $l_1, ..., l_p$
- Everyone generates p shares: $s_{i,1}, \dots, s_{i,p}$
- After receiving the shares(encrypted), leaders can compute their own share such that the sum of these shares is zero and replace the original one
- The main share s_j for user j is the sum of all his shares
 Aggregation or Comparison Protocol

O Diffie-Hellman Key-Exchange Based Protocol

- \circ Each meter *j* has its own secret key X_j
- In each round *i*, it will have a generator of $\mathbb{G} g_i = H(i)$, and also each meter *j* has its public key $Pub_{ij} = g_i^{X_j}$

$$O g_i^{x_j} = \prod_{k \neq j} Pub_{i,k}^{(-1)^{k < j} \cdot x}$$

 $O \sum_j x_j = 0$

Only Comparison Protocol

O Diffie-Hellman and Bilinear-map Based Protocol

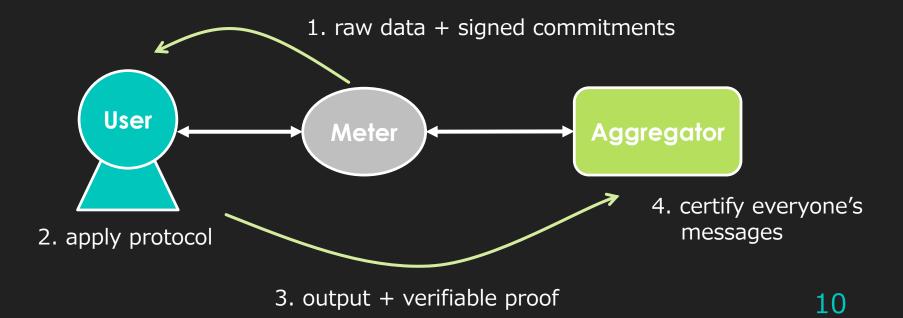
- Similar to the previous one but only need one public key (Pub_j) for each mdeter: $Pub_j = \hat{g}_0^{X_j}$
- O Bi-linear function $e(\mathbb{G}_1, \mathbb{G}_2) \rightarrow \mathbb{G}_T$

$$\bigcirc g_i^{x_j} = (\prod_{k \neq j} e(Pub_k, \hat{g}_i)^{(-1)^{k < j}})^{x_j}$$

 $\bigcirc \hat{g}_0$: generator of \mathbb{G}_1 ; $\hat{g}_i = H(i), H(\{0,1\}^*) \rightarrow \mathbb{G}_2$

O Also only Comparison Protocol

O Low-overhead Protocol


• Each pair of meter has their shared key $K_{j,k} = H(Pub_k^{X_j})$ where $Pub_k = g^{X_k}$, $H(\{0,1\}^*) \to \mathbb{G}$, g: generator of \mathbb{G} • $x_{i,j} = \sum_{k \neq j} (-1)^{k < j} H(K_{j,k} || i)$

O Aggregation or Comparison Protocol

Comparison

O Cryptographic Verifiability

• Transmit data with commitments and certifications

Comparison

• Computation & Communication Overheads

	Initialization	Communication	Computation
Interactive (agg)	$O(N^2) \cdot PK$	$O(N \cdot p) \cdot \mathbb{Z}_q$	$O(p) \cdot Enc$
Interactive (comp)	$O(N^2) \cdot PK$	$O(N) \cdot \mathbb{G}$	$O(1) \cdot E$
	$+O(N \cdot p) \cdot \mathbb{Z}_q$		
DH	$O(N^2) \cdot \mathbb{G}$	$O(N^2) \cdot \mathbb{G}$	$O(N) \cdot M + O(1) \cdot E$
Pairing	$O(N^2) \cdot \mathbb{G}$	$O(N) \cdot \mathbb{G}$	$O(N) \cdot P + O(1) \cdot E$
Low-overhead (agg)	$O(N^2) \cdot \mathbb{G}$	$O(N) \cdot \mathbb{Z}_{2^{32}}$	$O(N) \cdot H$
GC [4]	$O(N^2) \cdot PK$	$O(N^2) \cdot \mathbb{Z}_{n^2}$	$O(N) \cdot Enc + O(1) \cdot Dec$

Table 1. Performance comparison: PK.. size of public keys, $|\mathbb{Z}_x|$, \mathbb{G} .. size of algebraic group, Enc, Dec, E, M, H.. cost of encryption, decryption, exponentiation, multiplication, or hash function evaluation respectively.

Comparison

• Availability

O Critical parts \rightarrow inside meter

- O Privacy
 - O Passive attackers
 - Active attackers
- Forward Secrecy
 - O Interactive and DH based protocol

Conclusion

Thank you!